Einstein Metrics on Compact Lie Groups Which Are Not Naturally Reductive
نویسندگان
چکیده
The study of left-invariant Einstein metrics on compact Lie groups which are naturally reductive was initiated by J. E. D’Atri and W. Ziller in 1979. In the present work we prove existence of non-naturally reductive Einstein metrics on the compact simple Lie groups SO(n) (n ≥ 11), Sp(n) (n ≥ 3), E6, E7, and E8.
منابع مشابه
Warped product and quasi-Einstein metrics
Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...
متن کاملEinstein structures on four-dimensional nutral Lie groups
When Einstein was thinking about the theory of general relativity based on the elimination of especial relativity constraints (especially the geometric relationship of space and time), he understood the first limitation of especial relativity is ignoring changes over time. Because in especial relativity, only the curvature of the space was considered. Therefore, tensor calculations should be to...
متن کاملOn quasi-Einstein Finsler spaces
The notion of quasi-Einstein metric in physics is equivalent to the notion of Ricci soliton in Riemannian spaces. Quasi-Einstein metrics serve also as solution to the Ricci flow equation. Here, the Riemannian metric is replaced by a Hessian matrix derived from a Finsler structure and a quasi-Einstein Finsler metric is defined. In compact case, it is proved that the quasi-Einstein met...
متن کاملLie Transformation Groups and Geometry
We present geometrical aspects of Lie groups and reductive homogeneous spaces, and some resent results on homogeneous geodesics and homogeneous Einstein metrics. The article is based on the four lectures given in Varna, June 2007.
متن کاملNew Examples of Homogeneous Einstein Metrics
A Riemannian metric is said to be Einstein if the Ricci curvature is a constant multiple of the metric. Given a manifold M , one can ask whether M carries an Einstein metric, and if so, how many. This fundamental question in Riemannian geometry is for the most part unsolved (cf. [Bes]). As a global PDE or a variational problem, the question is intractible. It becomes more manageable in the homo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009